Задача № 260. Скольжение прямых углов

На плоскости построены два отрезка длинами a и b. С помощью циркуля и двух прямых углов (например, в виде школьных угольников) построить отрезки длинами c и d — два средних пропорциональных отрезка к данным a и b, т.е. чтобы выполнялось соотношение a:c = c:d = d:b.

Задача № 259. Обратный полет шарика

Из точки, где плоскость, наклоненная под углом α к горизонту, сопрягается с горизонтальной плоскостью, выстрелили шариком под углом β к горизонту. Каким должен быть угол β, чтобы шарик, отскочив от наклонной плоскости, вернулся в точку выстрела?

Е. Скляревский

Задача № 258. Заплыв точки по дуге

Две окружности равного радиуса с центрами в точках О и О1 имеют общую хорду АВ. Из точки О проведен в произвольном направлении отрезок, пересекающий хорду AB, затем пересекающий окружность O в точке С и окружность О1 в точке D. Пусть М – середина отрезка CD. Доказать (или опровергнуть), что геометрическим местом точек M является дуга окружности.
Задача 258 Заплыв точки по дуге ГМТ

Задача № 257. Трисекция

Дана окружность и в ней центральный острый угол альфа. Построить угол, равный третьей части альфа, используя циркуль и линейку, на которой можно делать засечки, так, чтобы все построения не выходили за пределы окружности.

Задача № 256. Шарик в желобах

В горизонтальной плите имеются два параллельных желоба полукруглого сечения радиуса R. Центры полукружий находятся в плоскости поверхности плиты на расстоянии L<2R друг от друга. На краю одного из желобов установлен шарик радиуса r. Шарик скатывается в желоб. При каком максимальном L шарик перескочит из одного желоба в другой? Трение отсутствует.

Задача № 255. Рулоны и наклоны

На наклонной плоскости два ткача придерживают два совершенно одинаковых рулона ткани. Одновременно отпускают. Один рулон скатывается со склона как цельный цилиндр, а второй во время спуска разматывается. Скольжение отсутствует. Какой рулон скатится быстрее?

Задача № 254. Стержень в лунке

В горизонтальной металлической плите имеется лунка в форме полусферы радиусом R. Стержень длиной L лежит одним концом в лунке, второй конец торчит. Трение между стержнем и лункой отсутствует. Найти угол стержня к горизонту.

форум www.dxdy.ru

Задача №253. Пространственный бильярд

Бильярдный стол имеет размеры 10 на 5. На этом столе в одиночестве лежит шар. Игрок бьёт по шару так, что тот, отразившись от четырёх бортов, возвращается в исходную точку. Чему будет равна длина пути, пройденного шаром?
possward.blogspot.com

А в невесомости в вакууме внутри параллелепипеда 5х10х16 ? Игрок бьёт по шару так, что тот, отразившись от каждой из шести граней по одному разу, возвращается в исходную точку. Чему будет равна длина пути, пройденного шаром?

Задача № 252. Тонкий угол

В равнобедренном треугольнике ABC AB=BC, угол при вершине B равен 20°. Из вершины A проведена прямая под углом 25° к основанию AC до пересечения со стороной BC в точке E. Из вершины С проведена прямая под углом 65° к основанию AC до пересечения со стороной AB в точке G. Найти угол CGE.
www.gogeometry.com

Задача № 251. Угол икс!

В треугольнике ABC проведена чевиана BD=AC, причем величины углов составляют DBC=2x, BAC=3x, DCB=4x. Найти величину угла x.

Antonio Gutierrez

Задача №250. Вершины квадрата

Дана окружность (центр не отмечен). С помощью только циркуля построить вершины квадрата, вписанного в эту окружность.

Задача №249. Спичечные биссектрисы

4 спички выкладываются под прямым углом «крестиком» так что соседние головки касаются. Следующие 4 спички выкладываются биссектрисами углов, так, что головки касаются предыдущих спичек.
Потом добавляются 8 спичек по биссектрисам и так далее. Выдерживается правило: головки на каждом этапе расположены на одном радиусе.
1. На каком радиусе будут лежать головки спичек N-го этапа, если ширина спичек m а радиус головок r?
2. Та же задача для первоначальной группы из трех, пяти,…. k спичек.
3. Ну и легкий вопрос о количестве спичек в N-ном ряду и в N рядах.

Из коллекции Софуса Тромгольта

Задача № 248. Парабола безопасности

Пушка стреляет, меняет угол наклона на 1 градус, снова стреляет, пока не обойдет 360 градусов (пушка приподнята над землей). Найти линию, огибающую все траектории снарядов.

Е.Скляревский

Задача № 247. Разрезать «холм» на квадраты

В прямоугольной системе Декартовых координат дано семь точек: A(0;0); B(0;2); C(1;4); D(3;5); E(5;4); F(6;2); G(6;0). Назовём семиугольник ABCDEFG «холмом». Требуется разрезать его на 9 частей, чтобы из них можно было составить четыре квадрата с площадями 9,9,5,1.

М. Москвитин, А.Заславский

P.S. Найдены решения разбивки и на 8 частей для получения того же результата. Может быть, удастся найти решение и с 7-ю частями?

Задача № 246. Канатоходец

Точки A и B подвеса концов невесомого нерастяжимого каната длиной L находятся на неподвижных опорах высотой Ha и Hb, расстояние между основаниями опор по горизонтали равно с. Нетрудно найти траекторию движения канатоходца, идущего по такому канату. Но какова будет траектория движения канатоходца массой m по канату массой M при тех же условиях подвеса каната?