Архив на категорию ‘Куб’

Задача № 263. На проспекте удвоения куба

Воскресенье, февраля 26, 2017

Проведем прямую AQ. С центром в точке O на ней построим окружность диаметром 3 так, что |AO|=1,5 (красная окружность). Отметим на прямой точку K так, что |AK|=1. Проведем через точку K под произвольным углом прямую, пересекающую окружность в точках G и E. Очевидно, в любом случае |GK|*|GE|=2. Построим с центром на прямой AQ окружность диаметром 17, касающуюся первой окружности в точке A (фиолетовая окружность). Пусть прямая GE пересекает вторую окружность в точках B и C. Очевидно, в любом случае |BK|*|CK|=16. Вращая прямую GE вокруг точки K можно найти такое ее положение, что |KE|=2^(1/3), а |GK|=2^(2/3), т.е. |GK|=|EK|^2. Вращая прямую BC вокруг точки K можно найти такое ее положение, что |KC|=2*2^(1/3), а |GE|=4*2^(2/3). С помощью гомотетии с коэффициентом 2 и центром в точке K построим синюю окружность. Точка C пересечения синей и фиолетовой окружности будет обладать замечательным свойством |KE|=|CK|=2^(1/3). Проверим наше построение с помощью окружности, полученной с помощью гомотетии с центром в точке K и коэффициентом 4 (зеленая окружность). На её пересечении с фиолетовой окружностью находится точка B такая, что |BK|=4*|GK|=4*2^(2/3), т.е. |BK|=|CK|^2. Легко убедиться, что точки B, K и E лежат на одной прямой.
Однако, почему не ликуют древние греки? Ведь мы построили отрезок, равный кубическому корню из 2, решив таким образом задачу об удвоении куба! Возможно, в наше построение вкралась ошибка? Найдите её.
Zadacha 263 na prospekte udvoeniya kuba

Задача №235. Общая часть конусов

Четверг, июня 27, 2013

Вершина прямого кругового конуса расположена в вершине A куба ABCDA’B’C’D’, а основанием является окружность, построенная на диагонали BA’ грани ABB’A’ куба. Вершина второго прямого кругового конуса также совпадает с вершиной A куба, а основанием является окружность, построенная на диагонали A’D грани ADD’A’ куба. Найти отношение объема общей части конусов к объему куба.

Задача №215. Ограничение куба

Пятница, декабря 14, 2012

В задаче №88 упоминался сюжет задачи 33bis из книги В. И. Арнольда «Задачи для детей от 5 до 15 лет»:
На трех попарно скрещивающихся ребрах куба отмечены точки N, M, Q. Построить сечение куба плоскостью MNQ.
Известно очень интересное дополнительное ограничение к этой задаче:
«… выполняя все построения только на поверхности куба».

незабываемое удовольствие, попробуйте

Задача № 165. Ку или возвращение на Землю.

Четверг, марта 10, 2011

Кубики можно складывать в столбики. Об этом любой пацак знает. Добрые четлане конечно вернут Вас на Землю, вот только если задачку решите: перед Вами 15 одинаковых с виду кубиков. Если индикатор направить на столбик пацакских кубиков, на нём загорится зеленая лампочка, но если в столбике есть хоть один четланский кубик, индикатор засветится оранжевым. Известно, что среди 15 кубиков два четланские, а остальные пацакские. Четлане предлагают найти оба четланских кубика, использовав индикатор не более 7 раз. И Вы дома. На Земле. Ну, а не найдете, сами понимаете — транфлюкатор…

старинная четланская загадка

Задача № 140. Полосатые обои для куба.

Четверг, ноября 25, 2010

Каким минимальным числом полос изоленты шириной 1 см можно обклеить куб с ребром N см, использовав при этом минимальное количество изоленты, если ленты можно клеить только параллельно ребрам куба?

Е. Скляревский. По следам problems.ru

Задача № 126. Два незадачливых кубика.

Суббота, сентября 25, 2010

Суммарный объем двух кубиков равен 17. Не могли бы Вы указать их точные размеры?

По следам Домашнего задания

Задача № 98. Объемная диафрагма.

Суббота, декабря 26, 2009

Если стороны квадрата повернуть вокруг его вершин внутрь квадрата на одинаковый угол, то их взаимопересечения образуют квадрат меньшего размера с тем же центром. Можно ли найти некое аналогичное преобразование для куба? Т.е. поворотом одних элементов куба вокруг других на одинаковый угол высечь во внутреннем пространстве куба куб меньшего объема с тем же центром.

Задача № 88. Сфера в кубе.

Воскресенье, ноября 29, 2009

На трех попарно скрещивающихся ребрах куба отмечены точки N, M, Q. Построить сечение куба плоскостью MNQ и сферу, касающуюся трех граней куба и секущей плоскости (найти центр и радиус сферы). Сколько может быть таких сфер?

Задача № 87. Носочки тянуть!

Суббота, ноября 28, 2009

Мастер спорта международного класса по спортивной гимнастике Бруно Альбертович Циглер, разучивая с подопечными на тренировке по акробатике новый элемент, для иллюстрации правильного положения головы в полёте прикрепил за ухом ручку-указку с лазерным лучом так, чтобы луч лазера совпадал с направлением взгляда прямо перед собой. Итак, разбег, рандат – фляк – сальто назад прогнувшись с пируэтом в 360 градусов, блестяще исполненное приземление без доскока и лишних шагов. Акробатическая дорожка пролегла вдоль средней линии спортзала, представляющего собой параллелепипед. Попробуйте изобразить траекторию следа лазерного луча на внутренней поверхности спортзала при выполнении сальто.

Задача № 80. Из пустого в порожнее.

Воскресенье, ноября 1, 2009

Имеются две ёмкости для воды кубической формы (тонкостенные кубы без верхней крышки), их объёмы 12 литров и 20,736 литров. Также имеется ровная горизонтальная поверхность и неограниченный запас воды. Требуется переливаниями получить в одном из кубов ровно 7 литров воды.

Из коллекции Cornered Rat

Задача № 74. Купание куба

Вторник, сентября 29, 2009

Тонкостенный куб массой 100 г и объемом 1 л на треть заполнен водой и закрыт герметично. Куб положили на воду в ванне и предоставили ему свободу. Какое положение займет куб?

Задача № 73. Треугольник на кубической планете.

Понедельник, сентября 28, 2009

Кратчайшей между двумя точками на поверхности куба называется ломаная наименьшей длины с концами в этих точках, целиком лежащая на поверхности куба (в случае точек из одной грани это будет отрезок). Треугольником на поверхности куба называют наименьшую по площади область на поверхности куба, границей которой служат кратчайшие, попарно соединяющие три точки. Какую наибольшую площадь может иметь треугольник на поверхности куба с ребром длины 1 ?

физмат класс