Архив на категорию ‘Задачи на вычисление’

Задача № 266. О превратностях розничной торговли

Пятница, апреля 21, 2017

Город имеет форму круга радиуса R. По всей площади города магазины торговой сети расположены равномерно. Расстояние от центра города до распределительного центра сети равно r. Найти среднее расстояние от распределительного центра до магазина сети.

Задача № 265. Псевдодиагонали

Суббота, апреля 15, 2017

Квадрат ABCD и правильный пятиугольник BEFGC имеют общую сторону BC. Вершины квадрата A и D лежат вне пятиугольника. Найти угол между отрезками AG и FD.

http://blog.kknop.com/2017/03/blog-post.html

Задача № 264. Каучуковый метеорит

Воскресенье, марта 5, 2017

Метеорит падает на сферическую Землю радиусом R под углом ѳ к отвесу со скоростью V и упруго (без потери энергии) отскакивает. В каком случае (при каком соотношении параметров) метеорит, попрыгав. вернётся в точку падения? (Допустим, g не меняется с высотой).

Е.Скляревский

Задача № 261. Погоня за отражением

Среда, ноября 9, 2016

В просторном зале, стоя на полу, вы видите на полу отражение светильника, подвешенного под потолком. Пусть ваш рост h, высота потолка H, расстояние между вами и точкой на полу под светильником S. Вы двигаетесь в направлении светильника со скоростью V. С какой скоростью вы догоняете отражение светильника? С какой скоростью отражение светильника движется к точке под светильником?

Задача № 259. Обратный полет шарика

Воскресенье, июня 26, 2016

Из точки, где плоскость, наклоненная под углом α к горизонту, сопрягается с горизонтальной плоскостью, выстрелили шариком под углом β к горизонту. Каким должен быть угол β, чтобы шарик, отскочив от наклонной плоскости, вернулся в точку выстрела?

Е. Скляревский

Задача № 256. Шарик в желобах

Суббота, января 2, 2016

В горизонтальной плите имеются два параллельных желоба полукруглого сечения радиуса R. Центры полукружий находятся в плоскости поверхности плиты на расстоянии L<2R друг от друга. На краю одного из желобов установлен шарик радиуса r. Шарик скатывается в желоб. При каком максимальном L шарик перескочит из одного желоба в другой? Трение отсутствует.

Задача № 254. Стержень в лунке

Пятница, января 1, 2016

В горизонтальной металлической плите имеется лунка в форме полусферы радиусом R. Стержень длиной L лежит одним концом в лунке, второй конец торчит. Трение между стержнем и лункой отсутствует. Найти угол стержня к горизонту.

форум www.dxdy.ru

Задача №253. Пространственный бильярд

Понедельник, октября 20, 2014

Бильярдный стол имеет размеры 10 на 5. На этом столе в одиночестве лежит шар. Игрок бьёт по шару так, что тот, отразившись от четырёх бортов, возвращается в исходную точку. Чему будет равна длина пути, пройденного шаром?
possward.blogspot.com

А в невесомости в вакууме внутри параллелепипеда 5х10х16 ? Игрок бьёт по шару так, что тот, отразившись от каждой из шести граней по одному разу, возвращается в исходную точку. Чему будет равна длина пути, пройденного шаром?

Задача № 252. Тонкий угол

Вторник, сентября 30, 2014

В равнобедренном треугольнике ABC AB=BC, угол при вершине B равен 20°. Из вершины A проведена прямая под углом 25° к основанию AC до пересечения со стороной BC в точке E. Из вершины С проведена прямая под углом 65° к основанию AC до пересечения со стороной AB в точке G. Найти угол CGE.
www.gogeometry.com

Задача № 251. Угол икс!

Четверг, сентября 18, 2014

В треугольнике ABC проведена чевиана BD=AC, причем величины углов составляют DBC=2x, BAC=3x, DCB=4x. Найти величину угла x.

Antonio Gutierrez

Задача №249. Спичечные биссектрисы

Воскресенье, апреля 6, 2014

4 спички выкладываются под прямым углом «крестиком» так что соседние головки касаются. Следующие 4 спички выкладываются биссектрисами углов, так, что головки касаются предыдущих спичек.
Потом добавляются 8 спичек по биссектрисам и так далее. Выдерживается правило: головки на каждом этапе расположены на одном радиусе.
1. На каком радиусе будут лежать головки спичек N-го этапа, если ширина спичек m а радиус головок r?
2. Та же задача для первоначальной группы из трех, пяти,…. k спичек.
3. Ну и легкий вопрос о количестве спичек в N-ном ряду и в N рядах.

Из коллекции Софуса Тромгольта

Задача № 246. Канатоходец

Понедельник, декабря 16, 2013

Точки A и B подвеса концов невесомого нерастяжимого каната длиной L находятся на неподвижных опорах высотой Ha и Hb, расстояние между основаниями опор по горизонтали равно с. Нетрудно найти траекторию движения канатоходца, идущего по такому канату. Но какова будет траектория движения канатоходца массой m по канату массой M при тех же условиях подвеса каната?

Задача №244. Треугольный триптих

Суббота, ноября 16, 2013

Дан треугольник ABC с длинами сторон BC=a, AC=b, AB=c. Прямые l1 и l2, образующие угол d, делят его на три равновеликие части. Найти геометрическое место вершин угла d.

Николай Москвитин

Задача №243. Движение окружностей

Четверг, октября 31, 2013

В горизонтальной плоскости P расположены две взаимно перпендикулярные прямые x и y, пересекающиеся в точке O. В вертикальной плоскости V, перпендикулярной биссектрисе угла между прямыми x и y и содержащей точку O, расположена окружность радиуса a, касающаяся плоскости P в точке O. В плоскости V также расположена концентричная первой окружность радиуса a-1. Окружности, оставаясь вертикальными и концентрическими, начинают перемещаться в направлении биссектрисы угла между x и y так, что большая окружность все время касается прямых x и y. Какую кривую образуют точки пересечения малой окружности с плоскостью P? Найти её уравнение.

Задача №242. Окружные диагонали ромба

Понедельник, октября 28, 2013

Диагональ делит ромб со стороной а на два треугольника, в которые вписаны окружности. Вторая диагональ также делит ромб на два треугольника и в них тоже вписаны окружности. При каком отношении диагоналей сумма площадей всех четырех окружностей будет наибольшей?

Е. Скляревский