Архив на категорию ‘цилиндр’

Задача № 256. Шарик в желобах

Суббота, января 2, 2016

В горизонтальной плите имеются два параллельных желоба полукруглого сечения радиуса R. Центры полукружий находятся в плоскости поверхности плиты на расстоянии L<2R друг от друга. На краю одного из желобов установлен шарик радиуса r. Шарик скатывается в желоб. При каком максимальном L шарик перескочит из одного желоба в другой? Трение отсутствует.

Задача №218. Слой сливок

Вторник, декабря 18, 2012

В кружке диаметром d поверх кофе не смешивающийся с ним слой сливок. На сколько градусов нужно наклонить кружку, чтобы слой сливок стал вдвое тоньше? Какой уровень кофе в кружке должен был быть первоначально, чтобы при требуемом наклоне не обнажилось дно? Какой высоты должна быть кружка, чтобы при требуемом наклоне ни капли сливок не пролилось?

по следам Инфобума

Задача №216. Вывернуть цилиндр

Воскресенье, декабря 16, 2012

Из полосы бумаги склеен цилиндр высотой h и диаметром d. Оцените минимальное отношение h/d, при котором цилиндр можно вывернуть наизнанку без разрывов бумаги.

математический фольклор