Архив на категорию ‘геометрическое место точек’
Четверг, декабря 23, 2010
На плоскости начерчены две пересекающиеся окружности радиусов r1 и r2. Можно ли с помощью циркуля и линейки провести третью окружность заданного радиуса r3 так, чтобы она проходила через точку пересечения двух первых и отсекала на них дуги, стягиваемые равными хордами?
Категория: геометрическое место точек, Задачи на построение, Замечательные кривые, Подумалось вдруг, треугольник, этюды | Нет комментариев »
Понедельник, июня 21, 2010
На плоскости лежат, касаясь друг друга, два шара радиусов R и r. Найти геометрическое место центров шаров, касающихся двух данных. Интересно составить уравнение кривой пересечения ГМТ с опорной плоскостью шаров. Если ГМТ разбивает пространство на два полупространства, можно ли оценить отношение частей объема «меньшего» из них, на которые разбивает его опорная плоскость?
Категория: геометрическое место точек, Задачи на вычисление, Замечательные кривые, Объём, Подумалось вдруг, этюды | 2 Комментариев »
Суббота, июня 19, 2010
В большом неподвижном колесе R водило V длиной R/2 начинают вращать вокруг центра O с угловым ускорением ε до поворота его на 180 градусов, после чего вращение замедляют с тем же ускорением до остановки его в начальной точке. При этом малое колесо R/2, ось вращения которого находится на конце водила в точке Q, катится по большому благодаря зубчатому зацеплению. В точке контакта колес перед началом движения K на оси, расположенной на малом колесе, подвешена (с возможностью вращения вокруг этой оси) спецлюлька, куда инкапсулирован космонавт. Какую максимальную перегрузку испытает космонавт?
в процессе испытаний все были пристегнуты ремнями безопасности, и никто не пострадал
Категория: геометрическое место точек, Задачи на вычисление, Замечательные кривые, Механические утехи, около физики, Подумалось вдруг, этюды | Нет комментариев »
Суббота, апреля 24, 2010
Вот среди ночи тайком взяли Вы, к примеру, конус из детского набора деревянных фигур и из баловства, ну вот буквально от нечего делать, не задумываясь, начертили у него на боку циркулем «окружность». Ну и конечно же заметили, что окружность какая-то не круглая. И на развертке конуса не круглая. И вообще никак не круглая. И решили составить уравнение этой кривулины на развертке конуса. Вот и мучайтесь! Да. А я спать пошел. 🙂
Категория: геометрическое место точек, Замечательные кривые, конус, Подумалось вдруг, этюды | 4 Комментариев »
Понедельник, апреля 5, 2010
Дан отрезок AB, на котором выбрана точка L. Найти геометрическое место вершин С треугольников ABC, для которых CL — биссеткриса угла ACB.
Категория: геометрическое место точек, Задачи на вычисление, Задачи на построение, Замечательные кривые, Подумалось вдруг, треугольник | Нет комментариев »
Пятница, января 29, 2010
В треугольнике АВС АС=(АВ+ВС)/2. Докажите, что центр вписанной в треугольник АВС окружности, середины сторон АВ и ВС и вершина В лежат на одной окружности.
ЕГЭ_тренер.ру
Категория: геометрическое место точек, задачи на доказательство, Классика, треугольник, этюды | Нет комментариев »
Воскресенье, января 10, 2010
По неподвижному эллипсу катится без скольжения равный ему эллипс так, что в каждый момент времени они симметричны относительно общей касательной. Какие линии описывают фокусы движущегося эллипса?
Математические олимпиады ОмГУ
Категория: геометрическое место точек, Задачи на построение, Замечательные кривые, Механические утехи, Эллипс | 3 Комментариев »
Четверг, декабря 24, 2009
На стороне AD внутри квадрата ABCD построен равносторонний треугольник A’D’E. Треугольник поворачивается так, что его вершина A’ скользит по стороне квадрата от A к D, а вершина D’ скользит по стороне квадрата от D к C. Какую кривую, непрерывно её касаясь, огибает при этом основание A’D’ треугольника? По каким кривым движутся центр O и вершина E треугольника?
Категория: геометрическое место точек, Замечательные кривые, квадрат, Механические утехи, Подумалось вдруг, треугольник, этюды | Нет комментариев »
Вторник, декабря 22, 2009
Имеются две скрещивающиеся под углом А прямые, расстояние между которыми составляет a. Шар радиуса R>a касается обеих прямых. Найти геометрическое место всех точек, в которых может находиться центр шара.
Категория: геометрическое место точек, на сфере, Подумалось вдруг, шары, этюды | Нет комментариев »
Вторник, декабря 22, 2009
Найти плоскую фигуру наименьшей площади, внутри которой возможен поворот равностороннего треугольника на 360 градусов.
Мишаня Дундило
Категория: геометрическое место точек, Задачи на вычисление, Задачи на построение, Замечательные кривые, Механические утехи, треугольник, этюды | 2 Комментариев »
Суббота, ноября 28, 2009
Мастер спорта международного класса по спортивной гимнастике Бруно Альбертович Циглер, разучивая с подопечными на тренировке по акробатике новый элемент, для иллюстрации правильного положения головы в полёте прикрепил за ухом ручку-указку с лазерным лучом так, чтобы луч лазера совпадал с направлением взгляда прямо перед собой. Итак, разбег, рандат – фляк – сальто назад прогнувшись с пируэтом в 360 градусов, блестяще исполненное приземление без доскока и лишних шагов. Акробатическая дорожка пролегла вдоль средней линии спортзала, представляющего собой параллелепипед. Попробуйте изобразить траекторию следа лазерного луча на внутренней поверхности спортзала при выполнении сальто.
Категория: геометрическое место точек, Задачи на построение, Замечательные кривые, Куб, Механические утехи, Тетраэдр, этюды | Нет комментариев »
Суббота, ноября 28, 2009
Ёмкость автотопливозаправщика представляет собой цилиндр, имеющий в поперечном сечении эллипс с полуосями a и b. Ёмкость заполнена частично, уровень топлива h от дна ёмкости. Какую кривую огибает уровень топлива на поворотах? Какую кривую огибает уровень топлива при разгоне и торможении на прямолинейных участках дороги, если длина ёмкости l ? (Волнением топлива пренебрегаем, считаем поверхность плоской).
Категория: геометрическое место точек, Задачи на вычисление, Замечательные кривые, Механические утехи, Объём, площадь, Подумалось вдруг, Эллипс, этюды | 1 Комментарий »
Понедельник, ноября 23, 2009
На вертикально установленной доске в точках A и B закреплены концы нити длиной l > AB. Отрезок AB образует острый угол a с вертикалью. Надетое на нить кольцо в состоянии равновесия находится в точке C. Найти отношение, в котором кольцо делит нить. Массой нити пренебречь. (Рассмотреть два варианта: 1) кольцо свободно скользит по нити; 2) кольцо закреплено на нити.)
Из коллекции validolum
Категория: геометрическое место точек, Задачи на вычисление, Механические утехи, около физики, треугольник, этюды | Нет комментариев »
Понедельник, октября 12, 2009
Даны три пересекающиеся плоскости, не имеющие общей прямой. Найти геометрическое место таких точек, сумма расстояний от которых до данных плоскостей постоянна.
И.Ф. Шарыгин
Категория: геометрическое место точек, Классика | 1 Комментарий »
Четверг, октября 8, 2009
Можно ли найти эллипс с таким эксцентриситетом е, при котором площадь, ограниченная эволютой эллипса, равна площади эллипса?
Категория: геометрическое место точек, Задачи на вычисление, Замечательные кривые, площадь, Подумалось вдруг, Эллипс, этюды | Нет комментариев »