Архив на категорию ‘этюды’

Задача № 266. О превратностях розничной торговли

Пятница, апреля 21, 2017

Город имеет форму круга радиуса R. По всей площади города магазины торговой сети расположены равномерно. Расстояние от центра города до распределительного центра сети равно r. Найти среднее расстояние от распределительного центра до магазина сети.

Задача № 264. Каучуковый метеорит

Воскресенье, марта 5, 2017

Метеорит падает на сферическую Землю радиусом R под углом ѳ к отвесу со скоростью V и упруго (без потери энергии) отскакивает. В каком случае (при каком соотношении параметров) метеорит, попрыгав. вернётся в точку падения? (Допустим, g не меняется с высотой).

Е.Скляревский

Задача № 263. На проспекте удвоения куба

Воскресенье, февраля 26, 2017

Проведем прямую AQ. С центром в точке O на ней построим окружность диаметром 3 так, что |AO|=1,5 (красная окружность). Отметим на прямой точку K так, что |AK|=1. Проведем через точку K под произвольным углом прямую, пересекающую окружность в точках G и E. Очевидно, в любом случае |GK|*|GE|=2. Построим с центром на прямой AQ окружность диаметром 17, касающуюся первой окружности в точке A (фиолетовая окружность). Пусть прямая GE пересекает вторую окружность в точках B и C. Очевидно, в любом случае |BK|*|CK|=16. Вращая прямую GE вокруг точки K можно найти такое ее положение, что |KE|=2^(1/3), а |GK|=2^(2/3), т.е. |GK|=|EK|^2. Вращая прямую BC вокруг точки K можно найти такое ее положение, что |KC|=2*2^(1/3), а |GE|=4*2^(2/3). С помощью гомотетии с коэффициентом 2 и центром в точке K построим синюю окружность. Точка C пересечения синей и фиолетовой окружности будет обладать замечательным свойством |KE|=|CK|=2^(1/3). Проверим наше построение с помощью окружности, полученной с помощью гомотетии с центром в точке K и коэффициентом 4 (зеленая окружность). На её пересечении с фиолетовой окружностью находится точка B такая, что |BK|=4*|GK|=4*2^(2/3), т.е. |BK|=|CK|^2. Легко убедиться, что точки B, K и E лежат на одной прямой.
Однако, почему не ликуют древние греки? Ведь мы построили отрезок, равный кубическому корню из 2, решив таким образом задачу об удвоении куба! Возможно, в наше построение вкралась ошибка? Найдите её.
Zadacha 263 na prospekte udvoeniya kuba

Задача № 261. Погоня за отражением

Среда, ноября 9, 2016

В просторном зале, стоя на полу, вы видите на полу отражение светильника, подвешенного под потолком. Пусть ваш рост h, высота потолка H, расстояние между вами и точкой на полу под светильником S. Вы двигаетесь в направлении светильника со скоростью V. С какой скоростью вы догоняете отражение светильника? С какой скоростью отражение светильника движется к точке под светильником?

Задача № 258. Заплыв точки по дуге

Четверг, июня 23, 2016

Две окружности равного радиуса с центрами в точках О и О1 имеют общую хорду АВ. Из точки О проведен в произвольном направлении отрезок, пересекающий хорду AB, затем пересекающий окружность O в точке С и окружность О1 в точке D. Пусть М – середина отрезка CD. Доказать (или опровергнуть), что геометрическим местом точек M является дуга окружности.
Задача 258 Заплыв точки по дуге ГМТ

Задача № 256. Шарик в желобах

Суббота, января 2, 2016

В горизонтальной плите имеются два параллельных желоба полукруглого сечения радиуса R. Центры полукружий находятся в плоскости поверхности плиты на расстоянии L<2R друг от друга. На краю одного из желобов установлен шарик радиуса r. Шарик скатывается в желоб. При каком максимальном L шарик перескочит из одного желоба в другой? Трение отсутствует.

Задача № 255. Рулоны и наклоны

Суббота, января 2, 2016

На наклонной плоскости два ткача придерживают два совершенно одинаковых рулона ткани. Одновременно отпускают. Один рулон скатывается со склона как цельный цилиндр, а второй во время спуска разматывается. Скольжение отсутствует. Какой рулон скатится быстрее?

Задача № 254. Стержень в лунке

Пятница, января 1, 2016

В горизонтальной металлической плите имеется лунка в форме полусферы радиусом R. Стержень длиной L лежит одним концом в лунке, второй конец торчит. Трение между стержнем и лункой отсутствует. Найти угол стержня к горизонту.

форум www.dxdy.ru

Задача № 248. Парабола безопасности

Среда, марта 5, 2014

Пушка стреляет, меняет угол наклона на 1 градус, снова стреляет, пока не обойдет 360 градусов (пушка приподнята над землей). Найти линию, огибающую все траектории снарядов.

Е.Скляревский

Задача № 246. Канатоходец

Понедельник, декабря 16, 2013

Точки A и B подвеса концов невесомого нерастяжимого каната длиной L находятся на неподвижных опорах высотой Ha и Hb, расстояние между основаниями опор по горизонтали равно с. Нетрудно найти траекторию движения канатоходца, идущего по такому канату. Но какова будет траектория движения канатоходца массой m по канату массой M при тех же условиях подвеса каната?

Задача №244. Треугольный триптих

Суббота, ноября 16, 2013

Дан треугольник ABC с длинами сторон BC=a, AC=b, AB=c. Прямые l1 и l2, образующие угол d, делят его на три равновеликие части. Найти геометрическое место вершин угла d.

Николай Москвитин

Задача №243. Движение окружностей

Четверг, октября 31, 2013

В горизонтальной плоскости P расположены две взаимно перпендикулярные прямые x и y, пересекающиеся в точке O. В вертикальной плоскости V, перпендикулярной биссектрисе угла между прямыми x и y и содержащей точку O, расположена окружность радиуса a, касающаяся плоскости P в точке O. В плоскости V также расположена концентричная первой окружность радиуса a-1. Окружности, оставаясь вертикальными и концентрическими, начинают перемещаться в направлении биссектрисы угла между x и y так, что большая окружность все время касается прямых x и y. Какую кривую образуют точки пересечения малой окружности с плоскостью P? Найти её уравнение.

Задача №242. Окружные диагонали ромба

Понедельник, октября 28, 2013

Диагональ делит ромб со стороной а на два треугольника, в которые вписаны окружности. Вторая диагональ также делит ромб на два треугольника и в них тоже вписаны окружности. При каком отношении диагоналей сумма площадей всех четырех окружностей будет наибольшей?

Е. Скляревский

Задача №240. Капленоида

Четверг, сентября 12, 2013

Из крана периодически капает вода, капли падают вертикально в воду в бассейне, вертикальная стенка которого находится на расстоянии а от линии падения капель. При падении капля выбивает брызги с поверхности воды. Допустим, брызги разлетаются всегда под углом b к поверхности воды. Какую кривую образуют на стенке бассейна точки падения брызг на неё?

Задача №239. Оценить выдержку

Четверг, сентября 12, 2013

Предлагаю рассмотреть крупно это фото и сказать, какая была выдержка?
E.Скляревский

Примечания. 1. Фото сделано в горах под Ташкентом. 2. Большое фото по клику на превью.