Архив на категорию ‘Задачи на вычисление’

Задача № 264. Каучуковый метеорит

Воскресенье, марта 5, 2017

Метеорит падает на сферическую Землю радиусом R под углом ѳ к отвесу со скоростью V и упруго (без потери энергии) отскакивает. В каком случае (при каком соотношении параметров) метеорит, попрыгав. вернётся в точку падения? (Допустим, g не меняется с высотой).

Е.Скляревский

Задача № 261. Погоня за отражением

Среда, ноября 9, 2016

В просторном зале, стоя на полу, вы видите на полу отражение светильника, подвешенного под потолком. Пусть ваш рост h, высота потолка H, расстояние между вами и точкой на полу под светильником S. Вы двигаетесь в направлении светильника со скоростью V. С какой скоростью вы догоняете отражение светильника? С какой скоростью отражение светильника движется к точке под светильником?

Задача № 259. Обратный полет шарика

Воскресенье, июня 26, 2016

Из точки, где плоскость, наклоненная под углом α к горизонту, сопрягается с горизонтальной плоскостью, выстрелили шариком под углом β к горизонту. Каким должен быть угол β, чтобы шарик, отскочив от наклонной плоскости, вернулся в точку выстрела?

Е. Скляревский

Задача № 256. Шарик в желобах

Суббота, января 2, 2016

В горизонтальной плите имеются два параллельных желоба полукруглого сечения радиуса R. Центры полукружий находятся в плоскости поверхности плиты на расстоянии L<2R друг от друга. На краю одного из желобов установлен шарик радиуса r. Шарик скатывается в желоб. При каком максимальном L шарик перескочит из одного желоба в другой? Трение отсутствует.

Задача № 254. Стержень в лунке

Пятница, января 1, 2016

В горизонтальной металлической плите имеется лунка в форме полусферы радиусом R. Стержень длиной L лежит одним концом в лунке, второй конец торчит. Трение между стержнем и лункой отсутствует. Найти угол стержня к горизонту.

форум www.dxdy.ru

Задача №253. Пространственный бильярд

Понедельник, октября 20, 2014

Бильярдный стол имеет размеры 10 на 5. На этом столе в одиночестве лежит шар. Игрок бьёт по шару так, что тот, отразившись от четырёх бортов, возвращается в исходную точку. Чему будет равна длина пути, пройденного шаром?
possward.blogspot.com

А в невесомости в вакууме внутри параллелепипеда 5х10х16 ? Игрок бьёт по шару так, что тот, отразившись от каждой из шести граней по одному разу, возвращается в исходную точку. Чему будет равна длина пути, пройденного шаром?

Задача № 252. Тонкий угол

Вторник, сентября 30, 2014

В равнобедренном треугольнике ABC AB=BC, угол при вершине B равен 20°. Из вершины A проведена прямая под углом 25° к основанию AC до пересечения со стороной BC в точке E. Из вершины С проведена прямая под углом 65° к основанию AC до пересечения со стороной AB в точке G. Найти угол CGE.
www.gogeometry.com

Задача № 251. Угол икс!

Четверг, сентября 18, 2014

В треугольнике ABC проведена чевиана BD=AC, причем величины углов составляют DBC=2x, BAC=3x, DCB=4x. Найти величину угла x.

Antonio Gutierrez

Задача №249. Спичечные биссектрисы

Воскресенье, апреля 6, 2014

4 спички выкладываются под прямым углом «крестиком» так что соседние головки касаются. Следующие 4 спички выкладываются биссектрисами углов, так, что головки касаются предыдущих спичек.
Потом добавляются 8 спичек по биссектрисам и так далее. Выдерживается правило: головки на каждом этапе расположены на одном радиусе.
1. На каком радиусе будут лежать головки спичек N-го этапа, если ширина спичек m а радиус головок r?
2. Та же задача для первоначальной группы из трех, пяти,…. k спичек.
3. Ну и легкий вопрос о количестве спичек в N-ном ряду и в N рядах.

Из коллекции Софуса Тромгольта

Задача № 246. Канатоходец

Понедельник, декабря 16, 2013

Точки A и B подвеса концов невесомого нерастяжимого каната длиной L находятся на неподвижных опорах высотой Ha и Hb, расстояние между основаниями опор по горизонтали равно с. Нетрудно найти траекторию движения канатоходца, идущего по такому канату. Но какова будет траектория движения канатоходца массой m по канату массой M при тех же условиях подвеса каната?

Задача №244. Треугольный триптих

Суббота, ноября 16, 2013

Дан треугольник ABC с длинами сторон BC=a, AC=b, AB=c. Прямые l1 и l2, образующие угол d, делят его на три равновеликие части. Найти геометрическое место вершин угла d.

Николай Москвитин

Задача №243. Движение окружностей

Четверг, октября 31, 2013

В горизонтальной плоскости P расположены две взаимно перпендикулярные прямые x и y, пересекающиеся в точке O. В вертикальной плоскости V, перпендикулярной биссектрисе угла между прямыми x и y и содержащей точку O, расположена окружность радиуса a, касающаяся плоскости P в точке O. В плоскости V также расположена концентричная первой окружность радиуса a-1. Окружности, оставаясь вертикальными и концентрическими, начинают перемещаться в направлении биссектрисы угла между x и y так, что большая окружность все время касается прямых x и y. Какую кривую образуют точки пересечения малой окружности с плоскостью P? Найти её уравнение.

Задача №242. Окружные диагонали ромба

Понедельник, октября 28, 2013

Диагональ делит ромб со стороной а на два треугольника, в которые вписаны окружности. Вторая диагональ также делит ромб на два треугольника и в них тоже вписаны окружности. При каком отношении диагоналей сумма площадей всех четырех окружностей будет наибольшей?

Е. Скляревский

Задача №241. Танкисты идут на поправку

Воскресенье, октября 20, 2013

Танк вышел на позицию и с первого же выстрела поразил учебную мишень. Башня была повернута влево от продольной оси танка на 30°, угол возвышения ствола составлял 15°. По учебному заданию танкистам необходимо было произвести еще один контрольный выстрел по той же мишени, однако, после первого выстрела грунт под левой гусеницей просел, и танк получил крен на левый борт в 10°. Какие поправки на углы наводки должны ввести танкисты, чтобы снова поразить цель?

Задача №240. Капленоида

Четверг, сентября 12, 2013

Из крана периодически капает вода, капли падают вертикально в воду в бассейне, вертикальная стенка которого находится на расстоянии а от линии падения капель. При падении капля выбивает брызги с поверхности воды. Допустим, брызги разлетаются всегда под углом b к поверхности воды. Какую кривую образуют на стенке бассейна точки падения брызг на неё?