Задача № 134. Утверждение равнобокой трапеции.
Дана равнобедренная трапеция. Доказать следующие утверждения:
1)Точки пересечения прямых, проходящих через вершины тупых углов трапеции и образующих (попарно) равные углы одна с верхним основанием, другая с боковой стороной трапеции, и вершины тупых углов лежат на одной окружности.
2)Центр этой окружности лежит на пересечении перпендикуляров к боковым сторонам трапеции, проходящих через эти вершины, причём угол, образуемый этими прямыми, в два раза больше осторого угла трапеции. (аналогичные утверждения можно вывести для другого основания с той оговоркой, что во втором утверждении указанный угол будет больше 180 градусов.)
Николай Москвитин