Архив на категорию ‘Подумалось вдруг’

Задача № 141. Неуравновешенный обод.

Суббота, ноября 27, 2010

Имеется обод велосипедного колеса диаметром d, способный стоять или катиться по горизонтальной плоскости, оставаясь в вертикальной плоскости. Вдоль хорды AB обода натянута струна длиной t. На струне в точках P и Q укреплены шары массами M и m соответственно. |AP|=a, |PQ|=b. Найти точки обода, стоя на которых он будет находиться в равновесии. В какой из них равновесие будет устойчивым?

Задача № 131. Артразлёт

Четверг, ноября 4, 2010

Двухметровая доска лежит на асфальте одним концом, середина доски опирается на трубу. На конце доски буртик, в который упираются уложенные в продольный желобок доски в ряд десять теннисных мячей. Угол наклона доски в первоначальном состоянии 20 градусов к горизонту. На второй конец доски с высоты 1 метр бросают пудовую гирю. На каком расстоянии друг от друга приземлятся мячи?

tennisnye_myachi

Задача № 130. Колбошарик

Четверг, ноября 4, 2010

Имеется тонкостенная коническая колба диаметром у основания 100 мм, углом при вершине конуса 90 градусов, с цилиндрическим горлышком диаметром 20 мм. В колбу пропихнули эластичный резиновый шарик диаметром 50 мм и плотностью 0,5 г/см^3. Колбу затем наполнили водой и опрокинули. Сколько воды останется в колбе, если при касании шариком стенки колбы или её горлышка, он запирает собой отверстие?

Задача № 125. Сальто гексагона.

Суббота, августа 28, 2010

На плоскость, наклоненную к горизонту под углом бета, кладут монолитную шестигранную прямоугольную призму так, что её продольная ось параллельна горизонту, и отпускают. Случись покатившейся призме подпрыгнуть или, приземлившись, удариться о плоскость, удар будет абсолютно упругим. Скольжение между плоскостью и призмой отсутствует. Найдется ли такой угол бета, при котором покатившаяся и ненароком оторвавшаяся от плоскости призма приземлится на наклонную плоскость точно какой-либо из своих боковых граней (ну то есть не ударится о неё ребром, высекая искры, а шлёпнется всей боковой гранью плашмя)?
d0b3d0b5d0bad181d0b0d0b3d0bed0bd-d0bdd0b0-d181d0bad0bbd0bed0bdd0b5

Задача № 124. Отражение от окружности.

Вторник, августа 3, 2010

Внутри окружности выбраны произвольно две точки A и B. Найти такое направление луча из точки A, чтобы отраженный от окружности луч попал в точку B.

Задача №123. Чудная биссектриса.

Воскресенье, августа 1, 2010

Угол при вершине B треугольника ABC составляет 120 градусов. Продолжение биссектрисы угла B пересекает описанную окружность треугольника в точке L. Докажите, что BL= AB + BC.

Задача №122. Неваневинелонская башня.

Суббота, июля 31, 2010

littlebabel-1
Вавилонская башня. По боковой поверхности конуса винтовая лестница. При постоянном шаге винта угол подъема лестницы по мере приближения к верхушке башни увеличивается. А можно ли построить сужающуюся кверху башню такой формы, чтобы и шаг винта лестницы был постоянным, и угол её подъема сохранялся одинаковым от подножья до верхушки?

Задача № 120. Полости ГМТ.

Понедельник, июня 21, 2010

На плоскости лежат, касаясь друг друга, два шара радиусов R и r. Найти геометрическое место центров шаров, касающихся двух данных. Интересно составить уравнение кривой пересечения ГМТ с опорной плоскостью шаров. Если ГМТ разбивает пространство на два полупространства, можно ли оценить отношение частей объема «меньшего» из них, на которые разбивает его опорная плоскость?

Задача № 119. Страгипуллер в ЦПК

Суббота, июня 19, 2010

В большом неподвижном колесе R водило V длиной R/2 начинают вращать вокруг центра O с угловым ускорением ε до поворота его на 180 градусов, после чего вращение замедляют с тем же ускорением до остановки его в начальной точке. При этом малое колесо R/2, ось вращения которого находится на конце водила в точке Q, катится по большому благодаря зубчатому зацеплению. В точке контакта колес перед началом движения K на оси, расположенной на малом колесе, подвешена (с возможностью вращения вокруг этой оси) спецлюлька, куда инкапсулирован космонавт. Какую максимальную перегрузку испытает космонавт?
cosmonavt_v_ljulke
в процессе испытаний все были пристегнуты ремнями безопасности, и никто не пострадал

Задача № 115. Деление отрезка

Вторник, июня 1, 2010

На плоскости заданы произвольный отрезок AB и отрезок единичной длины. С помощью циркуля и линейки разделить отрезок AB на два отрезка так, чтобы отношение одного из них к единице было равно отношению второго к первому.

Задача № 112. Охота пуще неволи.

Суббота, апреля 24, 2010

Вот среди ночи тайком взяли Вы, к примеру, конус из детского набора деревянных фигур и из баловства, ну вот буквально от нечего делать, не задумываясь, начертили у него на боку циркулем «окружность». Ну и конечно же заметили, что окружность какая-то не круглая. И на развертке конуса не круглая. И вообще никак не круглая. И решили составить уравнение этой кривулины на развертке конуса. Вот и мучайтесь! Да. А я спать пошел. 🙂

Задача № 111. Циркулярные фантазии.

Среда, апреля 21, 2010

Можно ли одним раствором циркуля построить на листе бумаги кривую вида
y=b(1-((a/b)Sin(x/a))^2)^0,5

?

Задача № 110. Фокус с фокусами.

Вторник, апреля 20, 2010

Солнце в зените. На горизонтальной плоскости стоит вертикально круглый тонкий обруч диаметром D. Обруч начинает падать. Тень от обруча превращается в эллипс. Вы надеваете волшебные очки и видите, как сближаются фокусы эллипса. Шмяк! Обруч улегся горизонтально, фокусы слились в центре, волшебство исчезло. Допустим, обруч заваливался на бок с постоянной угловой скоростью w. Каков же был закон сближения (относительного движения) фокусов? А если обруч потерял равновесие и падал на бок под действием силы тяжести?

Задача № 108. ГМТ «С».

Понедельник, апреля 5, 2010

Дан отрезок AB, на котором выбрана точка L. Найти геометрическое место вершин С треугольников ABC, для которых CL — биссеткриса угла ACB.

Задача № 106. Брахистохрона подъема.

Суббота, февраля 13, 2010

Мотоциклист поднимается в гору от точки А к точке В. Путь его пролегает в вертикальной плоскости, проходящей через точки А и В. Сила тяги двигателя мотоцикла постоянна. При какой форме склона горы мотоциклист преодолеет свой путь за кратчайшее время? Масса вместе с мотоциклом M, скорость V в точке A максимальна для развиваемой двигателем тяги F, скольжение отсутствует.