Задача №144. Целочисленный треугольник.
Пятница, декабря 17, 2010Стороны и высота треугольника выражаются четырьмя последовательными целыми числами. Чему равна площадь этого треугольника?
Г.Э. Дьюдени
Стороны и высота треугольника выражаются четырьмя последовательными целыми числами. Чему равна площадь этого треугольника?
Г.Э. Дьюдени
На плоскости проведены четыре прямые, попарно не параллельные друг другу. Доказать, что ортоцентры четырех получившихся треугольников лежат на одной прямой.
сетевой фольклор
На диаметре AB окружности выбрана произвольно точка D. Перпендикуляр к AB, проведенный через точку D, пересекает окружность в точке C. На AD и DB как на диаметрах построены окружности. Общая касательная к этим окружностям, пересекающая CD, касается их в точках M и N соответственно. Доказать, что отрезок AC проходит через точку M, а BC — через N.
Николай Москвитин
В прямоугольном треугольнике ABC с прямым углом B проведены биссектриса AD, высота BE. Биссектриса BF угла ABE и биссектриса BG угла EBC пересекают биссектрису AD в точках J и I соответственно.
Доказать: ΙΒ=IJ=IG=IE.
Николай Москвитин
Дано: треугольник ABC. Известно, что высота BD образует со стороной BC угол в 45 градусов. Считается, что прямая BD, содержащая высоту, уже построена. Как всего одним движением циркуля построить ортоцентр треугольника ABC?
Николай Москвитин
Вписать в остроугольный треугольник ABC треугольник KLM минимального периметра (с вершинами K на AB, L на BC, M на CA).
В.И. Арнольд
Найти внутри данного треугольника АВС такую точку T, что площади треугольников АTС, ВTС и АTВ относятся, как n : m : k.
Из вершин треугольника проведены прямые, каждая из которых делит противоположную сторону в отношении m/n. Найти площадь треугольника, образованного взаимным пересечением этих трех прямых.
старинная арбузная тема
Угол при вершине B треугольника ABC составляет 120 градусов. Продолжение биссектрисы угла B пересекает описанную окружность треугольника в точке L. Докажите, что BL= AB + BC.
Дан отрезок AB, на котором выбрана точка L. Найти геометрическое место вершин С треугольников ABC, для которых CL — биссеткриса угла ACB.
Через центр O вписанной в треугольник ABC окружности проведена прямая, перпендикулярная прямой AO и пересекающая прямую BC в точке M. Из точки O на прямую AM опущен перпендикуляр OD. Докажите, что точки A, B, C и D лежат на одной окружности.
Докажите, что в любом треугольнике биссектриса любого угла делит пополам угол между высотой и радиусом описанной окружности, проведенными из той же вершины, что и биссектриса.
«Квант», 1999, №3.
В треугольнике АВС АС=(АВ+ВС)/2. Докажите, что центр вписанной в треугольник АВС окружности, середины сторон АВ и ВС и вершина В лежат на одной окружности.
Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках С и D, лежащих по разные стороны от прямой АВ. Касательные к этим окружностям в точках С и D пересекаются в точке Е. Найти АЕ, если АВ=10, АС=16, AD=15.
мехмат МГУ
Составить из дуг парабол криволинейный треугольник наименьшей площади с заданными вершинами (стороны треугольника должны пересекаться только в вершинах и быть направлены выпуклостью внутрь).