Архив на категорию ‘Задачи на вычисление’

Задача № 141. Неуравновешенный обод.

Суббота, ноября 27, 2010

Имеется обод велосипедного колеса диаметром d, способный стоять или катиться по горизонтальной плоскости, оставаясь в вертикальной плоскости. Вдоль хорды AB обода натянута струна длиной t. На струне в точках P и Q укреплены шары массами M и m соответственно. |AP|=a, |PQ|=b. Найти точки обода, стоя на которых он будет находиться в равновесии. В какой из них равновесие будет устойчивым?

Задача № 140. Полосатые обои для куба.

Четверг, ноября 25, 2010

Каким минимальным числом полос изоленты шириной 1 см можно обклеить куб с ребром N см, использовав при этом минимальное количество изоленты, если ленты можно клеить только параллельно ребрам куба?

Е. Скляревский. По следам problems.ru

Задача № 133. Гур Эмир и птицы.

Вторник, ноября 9, 2010

Радиус купола R, коэффициент трения лапок птиц о купол k. Сколько птиц поместится на куполе, если одна птица занимает площадь S? Еще надо уточнить, что птички — неделимые, недеформируемые кружки площадью S.

pticy_na_kupole

Е.С. Скляревский Компот

Задача № 132. Параболический трамплин.

Вторник, ноября 9, 2010

Мячик скатывается под действием силы тяжести по обрезанному параболическому трамплину y(x)=(x-a)^2+b — находясь в начальный момент в точке x=0 y=a^2+b, a и b>0 — определить в какой точке обрезать параболу, чтоб дальность полета была максимальной.

YuK

Задача № 131. Артразлёт

Четверг, ноября 4, 2010

Двухметровая доска лежит на асфальте одним концом, середина доски опирается на трубу. На конце доски буртик, в который упираются уложенные в продольный желобок доски в ряд десять теннисных мячей. Угол наклона доски в первоначальном состоянии 20 градусов к горизонту. На второй конец доски с высоты 1 метр бросают пудовую гирю. На каком расстоянии друг от друга приземлятся мячи?

tennisnye_myachi

Задача № 130. Колбошарик

Четверг, ноября 4, 2010

Имеется тонкостенная коническая колба диаметром у основания 100 мм, углом при вершине конуса 90 градусов, с цилиндрическим горлышком диаметром 20 мм. В колбу пропихнули эластичный резиновый шарик диаметром 50 мм и плотностью 0,5 г/см^3. Колбу затем наполнили водой и опрокинули. Сколько воды останется в колбе, если при касании шариком стенки колбы или её горлышка, он запирает собой отверстие?

Задача № 127. Треутреугольник.

Воскресенье, сентября 26, 2010

Из вершин треугольника проведены прямые, каждая из которых делит противоположную сторону в отношении m/n. Найти площадь треугольника, образованного взаимным пересечением этих трех прямых.
старинная арбузная тема

Задача № 126. Два незадачливых кубика.

Суббота, сентября 25, 2010

Суммарный объем двух кубиков равен 17. Не могли бы Вы указать их точные размеры?

По следам Домашнего задания

Задача № 125. Сальто гексагона.

Суббота, августа 28, 2010

На плоскость, наклоненную к горизонту под углом бета, кладут монолитную шестигранную прямоугольную призму так, что её продольная ось параллельна горизонту, и отпускают. Случись покатившейся призме подпрыгнуть или, приземлившись, удариться о плоскость, удар будет абсолютно упругим. Скольжение между плоскостью и призмой отсутствует. Найдется ли такой угол бета, при котором покатившаяся и ненароком оторвавшаяся от плоскости призма приземлится на наклонную плоскость точно какой-либо из своих боковых граней (ну то есть не ударится о неё ребром, высекая искры, а шлёпнется всей боковой гранью плашмя)?
d0b3d0b5d0bad181d0b0d0b3d0bed0bd-d0bdd0b0-d181d0bad0bbd0bed0bdd0b5

Задача № 124. Отражение от окружности.

Вторник, августа 3, 2010

Внутри окружности выбраны произвольно две точки A и B. Найти такое направление луча из точки A, чтобы отраженный от окружности луч попал в точку B.

Задача №122. Неваневинелонская башня.

Суббота, июля 31, 2010

littlebabel-1
Вавилонская башня. По боковой поверхности конуса винтовая лестница. При постоянном шаге винта угол подъема лестницы по мере приближения к верхушке башни увеличивается. А можно ли построить сужающуюся кверху башню такой формы, чтобы и шаг винта лестницы был постоянным, и угол её подъема сохранялся одинаковым от подножья до верхушки?

Задача № 120. Полости ГМТ.

Понедельник, июня 21, 2010

На плоскости лежат, касаясь друг друга, два шара радиусов R и r. Найти геометрическое место центров шаров, касающихся двух данных. Интересно составить уравнение кривой пересечения ГМТ с опорной плоскостью шаров. Если ГМТ разбивает пространство на два полупространства, можно ли оценить отношение частей объема «меньшего» из них, на которые разбивает его опорная плоскость?

Задача № 119. Страгипуллер в ЦПК

Суббота, июня 19, 2010

В большом неподвижном колесе R водило V длиной R/2 начинают вращать вокруг центра O с угловым ускорением ε до поворота его на 180 градусов, после чего вращение замедляют с тем же ускорением до остановки его в начальной точке. При этом малое колесо R/2, ось вращения которого находится на конце водила в точке Q, катится по большому благодаря зубчатому зацеплению. В точке контакта колес перед началом движения K на оси, расположенной на малом колесе, подвешена (с возможностью вращения вокруг этой оси) спецлюлька, куда инкапсулирован космонавт. Какую максимальную перегрузку испытает космонавт?
cosmonavt_v_ljulke
в процессе испытаний все были пристегнуты ремнями безопасности, и никто не пострадал

Задача № 116. Опрокинутый рельс.

Среда, июня 2, 2010

В горизонтальной плите имеется лунка в форме полусферы радиусом R. Тонкий стержень длиной L лежит одним концом в лунке, второй конец торчит. Трение между стержнем и лункой отсутствует. Найти угол стержня к горизонту.

Форум СПбГУ

Задача № 115. Деление отрезка

Вторник, июня 1, 2010

На плоскости заданы произвольный отрезок AB и отрезок единичной длины. С помощью циркуля и линейки разделить отрезок AB на два отрезка так, чтобы отношение одного из них к единице было равно отношению второго к первому.